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Abstract—The synthesis and peptide-binding properties of a Zn(II)nitrilotriacetate complex substituted with pyrimidine hydrazine amides
are reported. The metal complex provides millimolar binding affinity in aqueous buffer to peptides bearing N-terminal His. The pyrimidine
heterocycles intermolecularly interact with the bound peptide and quench the emission of nearby Trp residues by energy transfer.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Reversible interactions of ions or molecules by hydrogen
bonds, electrostatic or van der Waals interactions are the
foundation of molecular recognition processes.1 However,
the strength of hydrogen bonds and electrostatic interactions
decreases rapidly as the polarity of the surrounding solvent
increases.2 This hampers the binding of substrates such as
peptides, hormones, or carbohydrates under physiological
conditions, which is of interest for medicinal applications
and the design of biosensors. The use of reversibly coordi-
nating metal complexes as binding sites is a suitable alter-
native, which may provide high affinity in competitive
solvents.3 Recent examples showed the ability of suitable
metal complexes for selective binding to peptides3c and pro-
tein surface epitopes4,5 under physiological conditions. Such
synthetic receptors find use as bioanalytical probes6 or
markers7 or can interfere with protein function, e.g., inhibit-
ing enzyme activity8 or protein–protein interactions.9 We re-
port here the use of a functionalized zinc(II) nitrilotriacetato
(NTA) complex to label small peptides with pyrimidine
hydrazino amides. Fluorescence resonance energy transfer
(FRET)10 from nearby Trp residues sensitizes an emission
of the heteroaromatic pyrimidine ring.

Keywords: Metal complex; Peptide binding; Histidine; Luminescence;
Pyrimidine.
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2. Results and discussion

2.1. Synthesis

Various transition metal ion (e.g., Cu2+, Ni2+, and Zn2+) com-
plexes of NTA or IDA11 bind to the imidazole side chains of
surface exposed histidines of proteins.12 This coordinative
interaction is widely used for protein purification by immobi-
lized metal affinity chromatography (IMAC)13,14 and two-
dimensional protein crystallization.15 The dependence of the
NTA binding constant on the divalent metal in [M(NTA)]�

(M¼Mn2+, Co2+, Ni2+, Cu2+, and Zn2+) has been intensively
studied.16 Although Ni2+ or Cu2+ NTA complexes show
higher affinities to N-terminal His,12 a Zn2+ complex17,18

was chosen for peptide binding to obtain a diamagnetic com-
pound, which allows NMR investigations. The synthesis of
the peptide-binding Zn(II)–pyrimidine complex 6 is shown
in Figure 1. As spacer between the complex and the hetero-
arene we choose a Gly unit to assist the possible formation
of a hydrogen bond to a coordinated peptide. Compound
1,19 obtained from lysine methyl ester, is coupled to Boc-
Gly-OH. After Boc deprotection, heterocycle 3, which was
reported recently,3b was introduced by standard peptide
coupling procedures. Cleavage of the methyl ester under
basic conditions generates the NTA ligand and complexation
with Zn2+ leads to the desired functionalized complex 5. To
improve water solubility, the analogous complex 9, extended
by one pyrimidine hydrazine unit, was prepared (Fig. 2).

2.2. Structure

To derive structural information about the binding motif
of 5 to the pentapeptide NH2-His-Leu-Leu-Val-Phe-OMe

mailto:burkhard.koenig@chemie.uni-regensburg.de
mailto:burkhard.koenig@chemie.uni-regensburg.de


12192 X. Li et al. / Tetrahedron 62 (2006) 12191–12196
N

OEtO

O

OEt

O

OMe
NH2

N
HO

R

N

OEtO

O

OEt

O

OMe
N
H

N N

O
N
H

N
H

NEt2

Boc
N
HO

N

OEtO

O

OEt

O

OMe
N
HN N

LiO

O
N
H

N
H

NEt2

Boc

N
H

O
N
H

O

NN

NEt 2

N
H

N
H

N

O O

O

O

O

O

Zn
2+H2O

H2O

Boc

Li+

Boc-Gly-OH
EDC/HOBt
DIPEA, RT,
12 h

77 %

1

2-Boc

59 %

HBTU/HOAt,
DIPEA, 2-H

3
4

1. LiOH
2. Zn(ClO4)2

57 %

5

2-H

HCl Et2O, RT, 
30 min, quant.

-

Figure 1. Synthesis of zinc(II)-NTA pyrimidine complex 5.
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Figure 2. Synthesis of water-soluble zinc(II)-NTA pyrimidine complex 9.
(Fig. 3) NMR experiments in DMSO-d6 were performed.20

Resonance signals of the NMR spectra of 5—H-His-Leu-
Leu-Val-Phe-OMe (c¼3.3�10�2 M) were assigned (see
Supplementary data, Fig. S-1 for details) and temperature-
induced shift was used to identify hydrogen bonding of
NH groups (see Supplementary data, Tables S-1, S-2 and
Fig. S-2).21 Shifts larger than �2 ppb/K typically indicate
a strong interaction, while values smaller than �4 ppb/K
show solvent exposed atoms.22 The smallest ppb/K value
(�2.57 ppb/K) in the aggregates spectrum was obtained
for NH-C. This proton is most likely hydrogen bound to
both the lone pair of the oxygen atom of the amide bond
and the lone pair of the nitrogen atom in the pyrimidine
ring. The temperature dependent shift of �2.95 ppb/K
of NH-G indicates a hydrogen bond between peptide
and complex. All other temperature dependent shifts of
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5—H-His-Leu-Leu-Val-Phe-OMe show values of 3 ppb/K or
higher suggesting no strong hydrogen bonds.

2D-NOESY and ROESY23 experiments (see Supplementary
data, Figs. S-3 and S-4 for details) showed 10 contacts
between functionalized complex 5 and the coordinated
pentapeptide. The data support the depicted aggregate struc-
ture24 (Fig. 3) with interactions of NH-C and protons at C-11
to NH-G, NH-H and protons at C-190 to C220, and contacts of
imidazole and parts of the NTA ligand. A similar aggregate
analysis was attempted using complex 9 and H-His-Asp-
Trp-Ser-Gly-OH in buffered water. Resonance signals of
the individual compounds were assigned and their chemi-
cally induced shift in the mixture indicates interactions of
complex and peptide (see Supplementary data, Figs. S-5 and
S-6). However, substantial signal broadening in the spectrum
of the mixture did not allow a more detailed analysis.

2.3. Peptide binding

The Trp emission of peptides is quenched upon their coordi-
nation to complex 9. A perfect overlap of the pyrimidine
absorption spectrum with the Trp emission allows intramo-
lecular energy transfer (Fig. 4). The FRET emission of the
pyrimidine chromophore is visible in aprotic solvents, such
as acetonitrile, but weak in aqueous media. Therefore, Trp
emission quenching (Fig. 5) was used to monitor the binding
of complex 9 to pentapeptides H-His-Asp-Trp-Ser-Gly-OH
and H-His-Thr-Trp-Asp-Asp-OH.
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Figure 3. Structure and numbering of the proposed aggregate formed in
an equimolar mixture of 5 and H-His-Leu-Leu-Val-Phe-OMe (c¼3.3�10�2

M) in DMSO-d6.
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Figure 4. Intramolecular energy transfer within the peptide–metal complex
aggregate leading to Trp emission quenching.
A binding stoichiometry of 1:1 for complex 9 and the peptides
was confirmed by Job’s plot analysis (see Supplementary
data, Figs. S-7 and S-9 for data). Emission titration data
were used to derive binding affinities, which are, as expected
for the complexation of N-terminal histidine to a Zn(II)-NTA,
in the millimolar range. The binding affinity of 9 to H-His-
Asp-Trp-Ser-Gly-OH (log K¼4.6�0.3 L/mol; Fig. S-8) is
slightly higher than the value for H-His-Thr-Trp-Asp-Asp-
OH (log K¼4.0�0.3 L/mol; Fig. 6).25 Ligand 8 or Trp-con-
taining peptides missing N-terminal histidine show no affinity
under the experimental conditions, confirming the impor-
tance of the Zn(II)-NTA to His complexation for the binding.
The addition of a non-substituted Zn(II)-NTA complex or
pyrimidine amino acids does not affect the Trp emission.

3. Conclusion

The combination of an imidazole-coordinating metal
complex, which binds to N-terminal His, with luminescent
pyrimidine hydrazine acids (PHA) leads to a luminescent
non-covalent peptide label. The proposed binding process oc-
curs in two steps. Initially, the Zn(II)-NTA complex strongly
coordinates to the imidiazole of an N-terminal His, followed
by weaker intramolecular interaction of the PHA moiety to
the backbone of the peptide. Within the aggregate, quenching
of Trp peptide emission by energy transfer to the PHA
moieties signals the binding process. Zn(II)-NTA–PHA
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(1.0�10�5 mol/L) with compound 9 in Tris buffered aqueous solution at
pH 7.2; lex¼280 nm.
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complexes like 9 may find use as molecular probes to explore
peptidic structures in physiological solution.

4. Experimental

4.1. 2-(Bis-ethoxycarbonylmethyl-amino)-6-(2-tert-
butoxycarbonylamino-acetylamino)-hexanoic acid
methyl ester (2-Boc)

To a solution of 131 mg (0.75 mmol) Boc-Gly-OH, 122 mg
(0.9 mmol) HOBt, 158 mL (140 mg, 0.9 mmol) NEt3, and
447 mL (339 mg, 2.63 mmol) Huenig’s base in 2 mL of
DMF was added a solution of 302 mg (0.75 mmol) amine 1
in 1 mL of DMF at 0 �C. The reaction mixture was allowed
to warm to rt and stirred for 18 h. The solution was diluted
with H2O (4 mL) and extracted with CH2Cl2 (2�10 mL).
The organic phase was dried over Na2SO4, evaporated, and
then concentrated under reduced pressure. The residue was
purified by column chromatography (EtOAc, Rf¼0.36) to af-
ford 280 mg of 2-Boc as a colorless oil in 76% yield. IR (KBr
disk) cm�1: 3362, 2981, 2938, 2251, 1740, 1670, 1166. 1H
NMR (CDCl3, 400 MHz): d¼1.28 (t, 3J¼7.1 Hz, 6H), 1.47
(s, 9H), 1.48–1.67 (m, 4H), 1.70–1.74 (m, 2H), 3.28–3.31
(m, 2H), 3.45 (t, 3J¼7.6 Hz, 1H), 3.61 (s, 2H), 3.62 (s, 2H),
3.71 (s, 3H), 3.81–3.85 (m, 2H), 4.17 (q, 3J¼7.1 Hz, 4H),
5.42 (br s, 1H), 6.51 (br s, 1H). 13C NMR (CDCl3,
100 MHz): d¼14.2 (+), 22.5 (�), 28.2 (�), 28.3 (+), 29.3
(�), 39.1 (�), 44.2 (�), 51.4 (+), 52.7 (�), 60.7 (�), 64.1
(+), 79.9 (Cquat), 156.0 (Cquat), 169.5 (Cquat), 171.5 (Cquat),
173.3 (Cquat). MS (ESI, DCM/MeOH+10 mmol/L NH4Ac):
m/z (%)¼490.3 [M+H+] (100). HRMS calcd for
C22H39N3O9: 489.2686; found: 489.2680�0.0004.

4.2. 6-(2-Amino-acetylamino)-2-(bis-ethoxycarbonyl-
methyl-amino)-hexanoic acid methyl ester dihydro-
chloride (2-H)

Compound 2-Boc (259 mg, 0.53 mmol) was dissolved in
3 mL of ether saturated with HCl. The solution was stirred
for 15 h. The precipitate was filtered off, washed with cold
ether, and dried in vacuum to afford the deprotected amine
2-H as a colorless, hygroscopic salt in quantitative yield
(242 mg). The salt was used for subsequent reactions without
further purification. Mp: >200 �C (decomp.). IR (KBr disk)
cm�1: 3423, 2955, 1747, 1656, 1558, 1378, 1224, 1019, 914,
706. 1H NMR (DMSO-d6, 300 MHz): d¼1.17 (t, 3J¼7.0 Hz),
1.30–1.48 (m, 4H), 1.51–1.63 (m, 2H), 3.01–3.14 (m, 2H),
3.32–3.42 (m, 1H), 3.34–3.54 (m, 4H), 3.55–3.61 (m, 5H),
4.04 (q, 3J¼7.0 Hz, 4H), 8.16–8.34 (m, 3H), 8.48–8.52 (m,
1H), 9.94 (br s, 1H, NH). 13C NMR (DMSO-d6, 150 MHz):
d¼15.1 (+), 22.6 (�), 28.4 (�), 29.2 (�), 38.4 (�), 39.9
(�), 51.0 (+), 52.1 (�), 59.0 (�), 63.7 (+), 165.5 (Cquat),
170.7 (Cquat), 172.3 (Cquat). MS (ESI, DCM/MeOH+10
mmol/L NH4Ac): m/z (%)¼390.2 [M+H+] (100).

4.3. 2-(Bis-ethoxycarbonylmethyl-amino)-6-(2-{[6-(N0-
tert-butoxycarbonyl-hydrazino)-2-diethylamino-pyrim-
idine-4-carbonyl]-amino}-acetylamino)-hexanoic acid
methyl ester (4)

A solution of 120 mg (0.26 mmol) of the deprotected amine
2-H, 86 mg (0.26 mmol) of 3, 70 mg (0.52 mmol) HOBt,
197 mg (0.52 mmol) HBTU and 224 mL (168 mg, 1.3 mmol)
of Huenig’s base in 4 mL of DMF was stirred for 24 h at rt.
The solution was cooled to 0 �C, diluted with cold H2O
(5 mL), and extracted with CH2Cl2 (3�10 mL). The organic
phase was dried over MgSO4, evaporated, and then concen-
trated under reduced pressure. The residue was purified by
column chromatography (EtOAc, Rf¼0.3) to afford 4 as
a white solid in 59% (106 mg) yield. Mp: 144 �C; IR (KBr
disk) cm�1: 3325, 2989, 1735, 1649, 1532, 1380, 1187,
1093. 1H NMR (CDCl3, 600 MHz): d¼1.17 (t, 3J¼6.9 Hz,
6H), 1.22–1.28 (m, 6H), 1.35–1.45 (m, 2H), 1.47 (s, 9H),
1.55–1.60 (m, 2H), 1.66–1.72 (m, 2H), 3.23–3.33 (m, 2H),
3.40 (t, 3J¼7.6 Hz, 1H), 3.58–3.62 (m, 8H), 3.67 (s, 3H),
4.07–4.16 (m, 6H), 6.45–6.75 (m, 2H), 6.65 (br s, 1H),
6.69 (br s, 1H), 8.51 (t, 3J¼5.0 Hz, 1H). 13C NMR (CDCl3,
150 MHz): d¼13.2 (+), 14.2 (+), 22.9 (�), 28.2 (+), 28.4
(�), 29.6 (�), 39.1 (�), 41.9 (�), 43.2 (�), 51.4 (+), 52.7
(�), 60.6 (�), 64.6 (+), 81.7 (Cquat), 115.4 (+), 155.7 (Cquat),
155.8 (Cquat), 156.9 (Cquat), 160.1 (Cquat), 164.8 (Cquat),
168.7 (Cquat), 171.5 (Cquat), 173.2 (Cquat). MS (ESI,
MeOH+10 mmol/L NH4Ac): m/z (%)¼719.4 [M+Na+]
(22), 697.4 [MH+] (100).

4.4. Zn-NTA-complex 5

Seventy-three milligrams (0.1 mmol) of ester 4 and 3 mg
(0.30 mmol) of LiOH were dissolved in a 4:1 acetone/water
mixture and stirred for 1 day at 40 �C. The solvents were
removed under reduced pressure to afford the hygroscopic
2-(bis-carboxymethyl-amino)-6-(2-{[6-(N0-tert-butoxycar-
bonyl-hydrazino)-2-diethylamino-pyrimidine-4-carbonyl]-
amino}-acetylamino)-hexanoic acid Li salt (61 mg, 95%)
in almost quantitative yield. The salt was used for complex-
ation without further purification. Mp: >250 �C (decomp.).
1H NMR (D2O, 300 MHz): d¼0.52–0.73 (m, 6H), 0.86–1.69
(m, 15H), 2.78–3.22 (m, 5H), 3.34–3.63 (m, 4H), 3.84–4.06
(m, 4H), 6.34 (s, 1H), 7.12–7.24 (m, 1H), 7.34–7.45 (m,
1H). MS (ESI, H2O/MeCN/MeOH+10 mmol/L NH4Ac):
m/z (%)¼391.3 [M+H+] (100), 408.2 [M+NH4

+] (22), 798.7
[2M+NH4

+] (37), 803.6 [2M+Na+] (23).

Sixty-four milligrams (0.10 mmol) of the lithium salt were
suspended in 10 mL of H2O and 13.6 mg (0.10 mmol) of
ZnCl2 was added. The reaction mixture was stirred for
45 min at 40 �C, filtered and the solvent was removed under
reduced pressure. The solid was dissolved in EtOH and
treated with hexane precipitating 5 in 65% (47 mg) yield.
IR (KBr disk) cm�1: 3412, 2987, 2944, 2880, 1931, 1605,
1537, 1418, 1264, 965, 820. 1H NMR (MeOH-d4,
600 MHz): d¼1.15 (t, 3J¼7.0 Hz, 6H), 1.29–1.68 (m, 15H),
3.03–3.21 (m, 3H), 3.31–3.34 (m, 4H), 3.63 (q, 3J¼7.0 Hz,
4H), 4.05–4.10 (m, 2H), 6.52 (s, 1H). 13C NMR (MeOH-d4,
150 MHz): d¼13.8 (+), 26.8 (�), 28.3 (�), 28.7 (+), 30.3
(�), 42.8 (�), 43.6 (�), 55.7 (�), 60.3 (�), 69.1 (+), 81.7
(Cquat), 91.8 (+), 157.7 (Cquat), 158.7 (Cquat), 161.9 (Cquat),
167.3 (Cquat), 171.1 (Cquat), 178.1 (Cquat), 178.3 (Cquat),
179.5 (Cquat), 180.5 (Cquat). MS (ESI, H2O/MeOH+10
mmol/L NH4Ac): m/z (%)¼687.4 [M�H+]� (100).

4.5. Dipyrimidine 7

To a solution of 6 (200 mg, 0.24 mmol) in 4 mL of water/
acetone (v/v, 3:1) was added LiOH$H2O (11.5 mg,
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0.27 mmol). The reaction mixture was stirred for 6 h at rt.
Acetone was removed in vacuum and the remaining solvent
was lyophilized. Compound 7 (200 mg) was obtained quan-
titatively. IR (CHCl3) cm�1: 3423, 1668, 1618, 1529, 1374,
1084, 668. 1H NMR (CDCl3, 300 MHz): d¼1.34 (s, 9H),
3.19 (m, 12H), 3.40–3.44 (m, 8H), 3.52–3.58 (m, 8H),
3.62–3.67 (m, 8H), 3.69–3.72 (m, 8H), 6.36 (s, 1H), 6.46
(s, 1H). 13C NMR (CDCl3, 75 MHz): d¼27.5, 46.7, 46.9,
58.0, 68.6, 69.3, 69.4, 70.9, 71.0, 82.4, 158.2, 161.5. UV
(MeCN) lmax (log 3): 336 (6.76).

4.6. Compound 8

A mixture of 7 (200 mg, 0.24 mmol), 2-H (94 mg,
0.28 mmol), HOBt (96 mg, 0.71 mmol), EDC (110 mg,
0.71 mmol), and DIPEA (153 mg, 1.18 mmol) in 8 mL of
DMF was stirred for 12 h at 40 �C. The solution was allowed
to cool to rt, solvents were removed in vacuum and the crude
product was purified by column chromatography (CH2Cl2/
MeOH 1:40, Rf¼0.30) to afford compound 8 as a yellow
oil (135 mg, 50%). IR (CHCl3) cm�1: 3295, 1639, 1583,
1506, 1406, 1091. 1H NMR (CDCl3, 300 MHz): d¼1.23 (t,
J¼7.2 Hz, 6H), 1.32–1.40 (m, 2H), 1.44 (s, 9H), 1.59–1.71
(m, 4H), 3.29–3.39 (m, 13H), 3.48–3.51 (m, 10H), 3.57–
3.60 (m, 10H), 3.65–3.68 (m, 8H), 3.78–3.80 (m, 10H),
4.07–4.14 (m, 4H), 6.98 (s, 1H), 7.29 (s, 1H), 7.46 (s, 1H,
NH), 8.73 (s, 1H). 13C NMR (CDCl3, 75 MHz): d¼14.2,
23.3, 28.2, 28.7, 30.3, 40.1, 51.4, 52.6, 58.8, 60.6, 64.7,
69.4, 70.4, 71.7, 71.8, 81.6, 155.5, 171.5, 173.1. UV
(MeCN): lmax (log 3): 332 (6.05). MS (ESI, MeOH+10
mmol/L NH4Ac): m/z (%)¼1143.8 [MH+] (26), 572.5
[M+2H+] (100). HRMS calcd: 1143.6261 [M+]; found:
1143.6289.

4.7. Complex 9

To a solution of 8 (130 mg, 0.12 mmol) in 3 mL of water/ace-
tone (v/v, 3:1) was added LiOH$H2O (15.2 mg, 0.36 mmol).
The reaction mixture was stirred for 24 h at rt. Acetone was
removed in vacuum and the remaining solution was lyophi-
lized. The residue and zinc carbonate (29 mg, 0.05 mmol)
were dissolved in H2O (20 mL). After stirring for 1 h the sus-
pension was heated to 55 �C for 24 h. Insoluble particles
were filtered off and the filtrate was lyophilized. The raw
product was dissolved in ethanol and ether was added. The
precipitated material was separated from solution by centri-
fugation to give 9 (97 mg, 75%). IR (CHCl3) cm�1: 3282,
2930, 1722, 1585, 1511, 1431, 1369, 1249, 1161, 1096,
847, 782. 1H NMR (CDCl3, 300 MHz): d¼1.35 (s, 9H),
1.43–1.52 (m, 4H), 1.72–1.80 (m, 2H), 3.07–3.19 (m,
16H), 3.26–3.44 (m, 16H), 3.55–3.56 (m, 8H), 3.64–3.73
(m, 10H), 6.45 (s, 1H), 6.54 (s, 1H). 13C NMR (CDCl3,
75 MHz): d¼28.1, 47.3, 56.8, 68.3, 69.3, 69.4, 71.0, 160.8,
176.2. UV (MeCN) lmax (log 3): 338 (6.06). MS (ESI,
MeOH+10 mmol/L NH4Ac): m/z (%)¼1133.7 [MH+] (80),
566.4 [M+2H+] (100). HRMS calcd: 1135.4614
[M�+2H]+; found: 1135.4586.
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